Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
2.
Sci Adv ; 10(11): eadl3466, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38478608

RESUMEN

The transmission of viral diseases is highly unstable and highly contagious. As the carrier of virus transmission, cell is an important factor to explore the mechanism of virus transmission and disease. However, there is still a lack of effective means to continuously monitor the process of viral infection in cells, and there is no rapid, high-throughput method to assess the status of viral infection. On the basis of the virus light diffraction fingerprint of cells, we applied the gray co-occurrence matrix, set the two parameters effectively to distinguish the virus status and infection time of cells, and visualized the virus infection process of cells in high throughput. We provide an efficient and nondestructive testing method for the selection of excellent livestock and poultry breeds at the cellular level. Meanwhile, our work provides detection methods for the recessive transmission of human-to-human, animal-to-animal, and zoonotic diseases and to inhibit and block their further development.


Asunto(s)
Virosis , Virus , Animales , Humanos , Aves de Corral , Virosis/veterinaria
3.
Front Pharmacol ; 15: 1294755, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515855

RESUMEN

Hyperuricemia (HUA), a severe metabolic disease derived from purine metabolism disorder, will lead to abnormally increased serum uric acid (SUA) levels in the body. Studies have shown that HUA is highly related to gout, hypertension, diabetes, coronary heart disease, chronic kidney diseases, and so on. Traditional Chinese medicine (TCM) shows excellent results in treating HUA because of its unique advantages of multi-metabolites and multi-targets. This article reports on the use of TCM components for uric acid (UA)-lowering activity with excellent efficacy and low side effects based on established HUA models. This work summarizes the advantages and limitations of various HUA disease models for efficacy evaluation. Applications of TCM in HUA treatment have also been discussed in detail. This paper reveals recent research progress on HUA in constructing evaluation models and systematic TCM interventions. It will provide a scientific reference for establishing the HUA model and suggest future TCM-related HUA studies.

4.
Nanomicro Lett ; 16(1): 156, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512388

RESUMEN

Reactive oxygen species (ROS) plays important roles in living organisms. While ROS is a double-edged sword, which can eliminate drug-resistant bacteria, but excessive levels can cause oxidative damage to cells. A core-shell nanozyme, CeO2@ZIF-8/Au, has been crafted, spontaneously activating both ROS generating and scavenging functions, achieving the multi-faceted functions of eliminating bacteria, reducing inflammation, and promoting wound healing. The Au Nanoparticles (NPs) on the shell exhibit high-efficiency peroxidase-like activity, producing ROS to kill bacteria. Meanwhile, the encapsulation of CeO2 core within ZIF-8 provides a seal for temporarily limiting the superoxide dismutase and catalase-like activities of CeO2 nanoparticles. Subsequently, as the ZIF-8 structure decomposes in the acidic microenvironment, the CeO2 core is gradually released, exerting its ROS scavenging activity to eliminate excess ROS produced by the Au NPs. These two functions automatically and continuously regulate the balance of ROS levels, ultimately achieving the function of killing bacteria, reducing inflammation, and promoting wound healing. Such innovative ROS spontaneous regulators hold immense potential for revolutionizing the field of antibacterial agents and therapies.

5.
Nat Commun ; 15(1): 1295, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38346953

RESUMEN

Two-dimensional (2D) superlattices, formed by stacking sublattices of 2D materials, have emerged as a powerful platform for tailoring and enhancing material properties beyond their intrinsic characteristics. However, conventional synthesis methods are limited to pristine 2D material sublattices, posing a significant practical challenge when it comes to stacking chemically modified sublattices. Here we report a chemical synthesis method that overcomes this challenge by creating a unique 2D graphene superlattice, stacking graphene sublattices with monodisperse, nanometer-sized, square-shaped pores and strategically doped elements at the pore edges. The resulting graphene superlattice exhibits remarkable correlations between quantum phases at both the electron and phonon levels, leading to diverse functionalities, such as electromagnetic shielding, energy harvesting, optoelectronics, and thermoelectrics. Overall, our findings not only provide chemical design principles for synthesizing and understanding functional 2D superlattices but also expand their enhanced functionality and extensive application potential compared to their pristine counterparts.

6.
Nanomicro Lett ; 16(1): 120, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38372846

RESUMEN

Dry eye disease (DED) is a major ocular pathology worldwide, causing serious ocular discomfort and even visual impairment. The incidence of DED is gradually increasing with the high-frequency use of electronic products. Although inflammation is core cause of the DED vicious cycle, reactive oxygen species (ROS) play a pivotal role in the vicious cycle by regulating inflammation from upstream. Therefore, current therapies merely targeting inflammation show the failure of DED treatment. Here, a novel dual-atom nanozymes (DAN)-based eye drops are developed. The antioxidative DAN is successfully prepared by embedding Fe and Mn bimetallic single-atoms in N-doped carbon material and modifying it with a hydrophilic polymer. The in vitro and in vivo results demonstrate the DAN is endowed with superior biological activity in scavenging excessive ROS, inhibiting NLRP3 inflammasome activation, decreasing proinflammatory cytokines expression, and suppressing cell apoptosis. Consequently, the DAN effectively alleviate ocular inflammation, promote corneal epithelial repair, recover goblet cell density and tear secretion, thus breaking the DED vicious cycle. Our findings open an avenue to make the DAN as an intervention form to DED and ROS-mediated inflammatory diseases.

7.
ACS Nano ; 18(6): 4862-4870, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38231040

RESUMEN

Frequent outbreaks of viral diseases have brought substantial negative impacts on society and the economy, and they are very difficult to detect, as the concentration of viral aerosols in the air is low and the composition is complex. The traditional detection method is manually collection and re-detection, being cumbersome and time-consuming. Here we propose a virus aerosol detection method based on microfluidic inertial separation and spectroscopic analysis technology to rapidly and accurately detect aerosol particles in the air. The microfluidic chip is designed based on the principles of inertial separation and laminar flow characteristics, resulting in an average separation efficiency of 95.99% for 2 µm particles. We build a microfluidic chip composite spectrometer detection platform to capture the spectral information on aerosol particles dynamically. By employing machine-learning techniques, we can accurately classify different types of aerosol particles. The entire experiment took less than 30 min as compared with hours by PCR detection. Furthermore, our model achieves an accuracy of 97.87% in identifying virus aerosols, which is comparable to the results obtained from PCR detection.


Asunto(s)
Microfluídica , Aerosoles/química
8.
Innovation (Camb) ; 5(1): 100541, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38235187

RESUMEN

Accurate profiling of microscopy images from small scale to high throughput is an essential procedure in basic and applied biological research. Here, we present Microsnoop, a novel deep learning-based representation tool trained on large-scale microscopy images using masked self-supervised learning. Microsnoop can process various complex and heterogeneous images, and we classified images into three categories: single-cell, full-field, and batch-experiment images. Our benchmark study on 10 high-quality evaluation datasets, containing over 2,230,000 images, demonstrated Microsnoop's robust and state-of-the-art microscopy image representation ability, surpassing existing generalist and even several custom algorithms. Microsnoop can be integrated with other pipelines to perform tasks such as superresolution histopathology image and multimodal analysis. Furthermore, Microsnoop can be adapted to various hardware and can be easily deployed on local or cloud computing platforms. We will regularly retrain and reevaluate the model using community-contributed data to consistently improve Microsnoop.

9.
Mater Horiz ; 11(1): 113-133, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37856234

RESUMEN

Carbon dots (CDs) are a new type of quasi-spherical and zero-dimension carbon nanomaterial with a diameter less than 10 nm. They exhibit a broad absorption spanning from the ultraviolet (UV) to visible light regions and inspire growing interests due to their excellent performance. In recent years, it was identified that the CDs embedded in various inorganic matrices (IMs) can effectively activate afterglow emission by suppressing the nonradiative transitions of molecules and protecting the triplet excitons of CDs, which hold broad application prospects. Herein, recent advances in CDs@IMs are reviewed in detail, and the interaction and luminescence mechanisms between CDs and IMs are also summarized. We highlight the synthetic strategies of constructing composites and the roles of IMs in facilitating the applications of CDs in diverse areas. Finally, some directions and challenges of future research in this field are proposed.

10.
Adv Sci (Weinh) ; 11(9): e2305405, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38124471

RESUMEN

Treating the most widespread complication of diabetes: diabetic wounds poses a significant clinical obstacle due to the intricate nature of wound healing in individuals with diabetes. Here a novel approach is proposed using easily applicable injectable gelatin/metal/tea polyphenol double nanonetworks, which effectively remodel the wound microenvironment and accelerates the healing process. The gelatin(Gel) crosslink with metal ions (Zr4+ ) through the amino acids, imparting advantageous mechanical properties like self-healing, injectability, and adhesion. The nanonetwork's biological functions are further enhanced by incorporating the tea polyphenol metal nanonetwork through in situ doping of the epigallocatechin gallate (EGCG) with great antibacterial, self-healing, antioxidant, and anticancer capabilities. The in vitro and in vivo tests show that this double nanonetworks hydrogel exhibits faster cell migration and favorable anti-inflammatory and antioxidant properties and can greatly reshape the microenvironment of diabetic wounds and accelerate the wound healing rate. In addition, this hydrogel is completely degraded after subcutaneous injection for 7 days, with nondetectable cytotoxicity in H&E staining of major mice organs and the serum level of liver function indicators. Considering the above-mentioned merits of this hydrogel, it is believed that the injectable gelatin/metal/tea polyphenol double nanonetworks have broad biomedical potential, especially in diabetic wound repair and tissue engineering.


Asunto(s)
Diabetes Mellitus , Gelatina , Animales , Ratones , Antioxidantes , Hidrogeles , Metales , Polifenoles , Cicatrización de Heridas ,
11.
Adv Mater ; 35(52): e2307592, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949102

RESUMEN

Battery performance at subzero is restricted by sluggish interfacial kinetics. To resolve this issue, potassium-based dual-ion batteries (K-DIBs) based on the polytriphenylamine (PTPAn) cathode with anion storage chemistry and the hydrogen titanate (HTO) anode with K+ /solvent co-intercalation mechanism are constructed. Both the PTPAn cathode and the HTO anode do not undergo the desolvation process, which can effectively accelerate the interfacial kinetics at subzero. As revealed by theoretical calculations and experimental analysis, the strong K+ /solvent binding energy in the dilute electrolyte, the charge shielding effect of the crystal water, and the uniform SEI layer with high content of the flexible organic species synergically promote HTO to undergo K+ /solvent co-intercalation behavior. The special co-intercalation mechanism and anion storage chemistry enable HTO||PTPAn K-DIBs with superior rate performance and cycle durability, maintaining a capacity retention of 94.1% after 6000 cycles at -40 °C and 91% after 1000 cycles at -60 °C. These results provide a step forward for achieving high-performance energy storage devices at low temperatures.

12.
Nanomicro Lett ; 15(1): 239, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907770

RESUMEN

Blood vessels are essential for nutrient and oxygen delivery and waste removal. Scaffold-repairing materials with functional vascular networks are widely used in bone tissue engineering. Additive manufacturing is a manufacturing technology that creates three-dimensional solids by stacking substances layer by layer, mainly including but not limited to 3D printing, but also 4D printing, 5D printing and 6D printing. It can be effectively combined with vascularization to meet the needs of vascularized tissue scaffolds by precisely tuning the mechanical structure and biological properties of smart vascular scaffolds. Herein, the development of neovascularization to vascularization to bone tissue engineering is systematically discussed in terms of the importance of vascularization to the tissue. Additionally, the research progress and future prospects of vascularized 3D printed scaffold materials are highlighted and presented in four categories: functional vascularized 3D printed scaffolds, cell-based vascularized 3D printed scaffolds, vascularized 3D printed scaffolds loaded with specific carriers and bionic vascularized 3D printed scaffolds. Finally, a brief review of vascularized additive manufacturing-tissue scaffolds in related tissues such as the vascular tissue engineering, cardiovascular system, skeletal muscle, soft tissue and a discussion of the challenges and development efforts leading to significant advances in intelligent vascularized tissue regeneration is presented.

13.
Mater Horiz ; 10(10): 3879-3894, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37671650

RESUMEN

Natural plants have been attracting increasing attention in biomedical research due to their numerous benefits. Plant exosome-derived vesicles, some of the plant's components, are small nanoscale vesicles secreted by plant cells. These vesicles are rich in bioactive substances and play significant roles in intercellular communication, information transfer, and maintaining homeostasis in organisms. They also hold promise for treating diseases, and their vesicular structures make them suitable carriers for drug delivery, with large-scale production feasible. Therefore, this paper aims to provide an overview of nanovesicles from different plant sources and their extraction methods. We also outline the biological activities of nanovesicles, including their anti-inflammatory, anti-viral, and anti-tumor properties, and systematically introduce their applications in drug delivery. These applications include transdermal delivery, targeted drug delivery, gene delivery, and their potential use in the modern food industry. This review provides new ideas and methods for future research on plant exosomes, including their empowerment by artificial intelligence and gene editing, as well as their potential application in the biomedicine, food, and agriculture industries.


Asunto(s)
Antineoplásicos , Exosomas , Neoplasias , Humanos , Exosomas/química , Exosomas/patología , Inteligencia Artificial , Sistemas de Liberación de Medicamentos , Antineoplásicos/análisis , Antineoplásicos/uso terapéutico
14.
JACS Au ; 3(8): 2291-2298, 2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37654575

RESUMEN

Carbon dot (CD)-based luminescent materials have attracted great attention in optical anti-counterfeiting due to their excellent photophysical properties in response to ultraviolet-to-visible excitation. Hence, there is an urgent need for the general synthesis of CD-based materials with multimode luminescence properties and high stability; however, their synthesis remains a formidable challenge. Herein, CDs were incorporated into a Yb,Tm-doped YF3 matrix to prepare CDs@YF3:Yb,Tm composites. The YF3 plays a dual role, not only serving as a host for fixing rare earth luminescent centers but also functioning as a rigid matrix to stabilize the triplet state of the CDs. Under the excitation of 365 nm ultraviolet light and 980 nm near-infrared light, CDs@YF3:Yb,Tm exhibited blue fluorescence and green room-temperature phosphorescence of CDs and upconversion luminescence of Tm3+, respectively. Due to the strong protection of the rigid matrix, the stability of CDs@YF3:Yb,Tm is greatly improved. This work provides a general synthesis strategy for achieving multimode luminescence and high stability of CD-based luminescent materials and offers opportunities for their applications in advanced anti-counterfeiting and information encryption.

15.
ACS Nano ; 17(21): 21383-21393, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37767788

RESUMEN

Cell viability assessment is critical, yet existing assessments are not accurate enough. We report a cell viability evaluation method based on the metabolic ability of a single cell. Without culture medium, we measured the absorption of cells to terahertz laser beams, which could target a single cell. The cell viability was assessed with a convolution neural classification network based on cell morphology. We established a cell viability assessment model based on the THz-AS (terahertz-absorption spectrum) results as y = a = (x - b)c, where x is the terahertz absorbance and y is the cell viability, and a, b, and c are the fitting parameters of the model. Under water stress the changes in terahertz absorbance of cells corresponded one-to-one with the apoptosis process, and we propose a cell 0 viability definition as terahertz absorbance remains unchanged based on the cell metabolic mechanism. Compared with typical methods, our method is accurate, label-free, contact-free, and almost interference-free and could help visualize the cell apoptosis process for broad applications including drug screening.


Asunto(s)
Aprendizaje Profundo , Espectroscopía de Terahertz , Espectroscopía de Terahertz/métodos , Redes Neurales de la Computación , Supervivencia Celular , Evaluación Preclínica de Medicamentos
16.
J Colloid Interface Sci ; 651: 612-621, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37562303

RESUMEN

Programmable smart textiles with adaptive moisture/heat conditioning (MHC) capabilities are globally being sought to meet the requirements of comfort, energy efficiency, and health protection. However, a universal strategy for fabricating truly scalable and customizable MHC textiles is lacking. In this study, we introduce a scalable in situ grafting approach for the continuous fabrication of two series of smart textile yarns with opposite thermoresponsive wetting behaviors. In particular, the wetting transition temperature can be precisely programmed by adjusting the grafting formula, making the yarns highly customizable. The smart yarns demonstrated excellent mechanical strength, whiteness, weavability, biocompatibility, and washability (with more than 60 home washes), comparable to those of regular textile yarns. They can serve as building blocks independently or in combination to create smart textiles with adaptive sweat wicking and intelligent moisture/heat regulation capabilities. A proposed hybrid textile integrating both the two series of smart yarns can offer dry-contact and cooling/keep-warming effects of approximately 1.6/2.8 °C, respectively, in response to changes in ambient temperature. Our method provides a rich array of design options for nonpowered MHC textiles while maintaining a balance between traditional wearing conventions and large-scale production.

17.
Adv Sci (Weinh) ; 10(25): e2301357, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37357142

RESUMEN

Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.


Asunto(s)
Bacterias , Membrana Celular/metabolismo
18.
Acta Pharm Sin B ; 13(5): 2202-2218, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37250158

RESUMEN

Central nervous system (CNS) injuries, including stroke, traumatic brain injury, and spinal cord injury, are essential causes of death and long-term disability and are difficult to cure, mainly due to the limited neuron regeneration and the glial scar formation. Herein, we apply extracellular vesicles (EVs) secreted by M2 microglia to improve the differentiation of neural stem cells (NSCs) at the injured site, and simultaneously modify them with the injured vascular targeting peptide (DA7R) and the stem cell recruiting factor (SDF-1) on their surface via copper-free click chemistry to recruit NSCs, inducing their neuronal differentiation, and serving as the nanocarriers at the injured site (Dual-EV). Results prove that the Dual-EV could target human umbilical vascular endothelial cells (HUVECs), recruit NSCs, and promote the neuronal differentiation of NSCs in vitro. Furthermore, 10 miRNAs are found to be upregulated in Dual-M2-EVs compared to Dual-M0-EVs via bioinformatic analysis, and further NSC differentiation experiment by flow cytometry reveals that among these miRNAs, miR30b-3p, miR-222-3p, miR-129-5p, and miR-155-5p may exert effect of inducing NSC to differentiate into neurons. In vivo experiments show that Dual-EV nanocarriers achieve improved accumulation in the ischemic area of stroke model mice, potentiate NSCs recruitment, and increase neurogenesis. This work provides new insights for the treatment of neuronal regeneration after CNS injuries as well as endogenous stem cells, and the click chemistry EV/peptide/chemokine and related nanocarriers for improving human health.

19.
ACS Nano ; 17(10): 9003-9013, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37116070

RESUMEN

The intelligent responsive drug delivery system has great application potential in cancer precision therapy. Although many antitumor methods have been developed based on drug delivery systems, most of them yet suffer from poor antitumor efficiency. In this project, a near-infrared and pH dual-response multimodal collaborative platform for diagnosis and treatment (PCN-DOX@PDA) was constructed. We used PCN-600 as a vehicle loaded with antineoplastic drugs and polydopamine (PDA). Under 633 nm laser irradiation, the ligand tetrakis(4-carboxyphenyl)porphyrin (TCPP) in PCN-600 can generate singlet oxygen (1O2) and kill tumor cells. PDA is used as photothermal agent of PTT. PCN-DOX@PDA achieves the intelligent release of antitumor drugs by responding to the weak acidity of the tumor microenvironment and thermal stimulation generated by NIR irradiation. In addition, since the central ion of PCN is Fe3+, PCN-DOX@PDA realizes the diagnosis and treatment of tumors through magnetic resonance imaging-mediated tumor chemotherapy and photothermal and photodynamic synergistic therapy. This triple synergistic strategy showed excellent biocompatibility and antitumor ability in in vivo experiments on a 4T1 tumor-bearing mouse model, indicating that PCN-DOX@PDA has a good development prospect in the field of precision cancer therapy and diversified biomedical applications.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Ratones , Animales , Doxorrubicina/uso terapéutico , Fototerapia/métodos , Medicina de Precisión , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Microambiente Tumoral
20.
Bioact Mater ; 25: 629-639, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37056278

RESUMEN

As a renewable and sustainable source for energy, environment, and biomedical applications, microalgae and microalgal biodiesel have attracted great attention. However, their applications are confined due to the cost-efficiency of microalgal mass production. One-step strategy and continuous culturing systems could be solutions. However, current studies for optimization throughout microalgae-based biofuel production pipelines are generally derived from the batch culture process. Better tools are needed to study algal growth kinetics in continuous systems. A microfluidic chemostatic bioreactor was presented here, providing low-bioadhesive cultivations for algae in a cooperative environment of gas, nutrition, and temperature (GNT) involved with high throughput. The chip was used to mimic the continuous culture environment of bioreactors. It allowed simultaneously studying of 8 × 8 different chemostatic conditions on algal growth and oil production in parallel on a 7 × 7 cm2 footprint. On-chip experiments of batch and continuous cultures of Chlorella. sp. were performed to study growth and lipid accumulation under different nitrogen concentrations. The results demonstrated that microalgal cultures can be regulated to grow and accumulate lipids concurrently, thus enhancing lipid productivity in one step. The developed on-chip culturing condition screening, which was more suitable for continuous bioreactor, was achieved at a half shorter time, 64-times higher throughput, and less reagent consumption. It could be used to establish chemostat cultures in continuous bioreactors which can dramatically accelerate the development of renewable and sustainable algal for CO2 fixation and biosynthesis and related systems for advanced sustainable energy, food, pharmacy, and agriculture with enormous social and ecological benefits.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA